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a b s t r a c t

Locality preserving projection (LPP) is a manifold learning method widely used in pattern recognition

and computer vision. The face recognition application of LPP is known to suffer from a number of

problems including the small sample size (SSS) problem, the fact that it might produce statistically

identical transform results for neighboring samples, and that its classification performance seems to be

heavily influenced by its parameters. In this paper, we propose three novel solution schemes for LPP.

Experimental results also show that the proposed LPP solution scheme is able to classify much more

accurately than conventional LPP and to obtain a classification performance that is only little influenced

by the definition of neighbor samples.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Locality preserving projection (LPP) is a manifold learning
method [1–7] widely used in pattern recognition and computer
vision. LPP is also well-known as a linear graph embedding
method [8,9]. When LPP transforms different samples into new
representations using the same linear transform, it tries to
preserve the local structure of the samples, i.e., the neighbor
relationship between samples [10–15] so that samples that were
originally in close proximity in the original space remain so in the
new space. We note that the original LPP method was unsuper-
vised and was proposed for only vector samples, not being able to
be directly applied to image samples. Here ‘unsupervised’ means
that when producing the transforming axis the original LPP
method does not exploit the class-label information. Hereafter
this method is referred to as conventional LPP.

There have been several types of improvements to conventional
LPP. The first type of improvement is supervised LPP [16–19],
which seeks to improve the performance of LPP in recognition
problems by exploiting the class-label information of samples in
the training phase. The main difference between unsupervised
LPP and supervised LPP is that unsupervised LPP uses only the
distance metric between samples to determines ‘neighbor
samples’ whereas supervised LPP uses both the distance metric
and the class label of samples to determine ‘neighbor samples’.
Supervised LPP does not regard two samples from two different
classes are ‘neighbors’ even if they are in close proximity to each
ll rights reserved.

ax: +86 752 26032461.
other. Since the weight matrix is determined on the basis of
neighbor relationship between samples, having different weight
matrices is also one of the main differences between supervised
LPP and unsupervised LPP. It is usually thought that supervised
LPP can outperform unsupervised LPP in classification applica-
tions owing to the use of the class-label information. Local
discriminant embedding (LDE) [20] and marginal Fisher analysis
(MFA) [21] can also be viewed as supervised LPP methods. This is
because their training phases both exploit the class-label
information of samples. They are derived by using a motivation
partially similar to LPP and each of them is based on an eigen-
equation formally similar to the eigen-equation of LPP. On the
other hand, since LDE and MFA partially borrow the idea of
discriminant analysis and try to produce satisfactory linear
separability, their ideas are also somewhat different from the
idea of preserving the local structure of LPP. LDE and MFA can be
viewed as two combinations of the locality preserving technique
and the linear discriminant analysis. The two methods probably
perform worse than the conventional supervised LPP in preser-
ving the local structure.

The second type of improvement changes conventional LPP to
a nonlinear transform method by using the kernel trick [19–24].
This type of improvement transforms a sample into a linear
combination of a number of kernel functions each being
determined by this sample and one training sample. The method
uses the same linear combination coefficients to transform each
sample into the new representation. Because the kernel function
is nonlinearly related to the sample, the transform mapping is
nonlinear. The third type of improvement to conventional LPP
mainly focuses on directly implementing LPP for two-dimensional
rather than one-dimensional vectors. This allows LPP to have a
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higher computational efficiency. This type of improvement has
been referred to as two-dimensional locality preserving projec-
tion (2DLPP) [25,26]. The fourth type of improvement to
conventional LPP seeks to obtain LPP solutions with different
solution properties. Examples of this type of improvement include
orthogonal locality preserving method [27], uncorrelated LPP
feature extraction method [28], the fast implementation algo-
rithm for unsupervised orthogonal LPP [29], and the LPP
algorithm for the SSS problem [30].

Different improvements to conventional LPP can also be
regarded as implementations of the idea of locality preserving
projection under different constraint conditions or in different
cases. For example, unsupervised LPP requires all the samples to
preserve their local neighbor relationship, whereas supervised
LPP requires only samples from the same class to preserve their
neighbor relationship. As conventional LPP was devised for vector
data, its implementation on an image-based application requires
that the image be converted into a vector in advance. However,
2DLPP is devised for image matrices, which means that 2DLPP
directly applies the idea of locality preserving projection to image
matrices rather than the vector corresponding to the image.
Recently it has been demonstrated that LPP is theoretically related
and formally similar to other linear dimensionality reduction
methods and the main difference between LPP and them is in the
weight matrix. Indeed, many popular linear dimensionality
reduction methods including unsupervised LPP, supervised LPP,
linear discriminant analysis (LDA), MFA, LDE and neighborhood
preserving embedding (NPE) can be described as the implemen-
tations of the linear graph embedding framework with different
weight matrices [31]. Conventional LPP and its improvements
have been used in face recognition, image retrieval, document
analysis, data clustering, etc. [11,16–18,32,33].

As in image-based applications, conventional LPP should first
convert the image into the vector and as conventional LPP obtains
the transforming axes by solving the minimum or maximum
eigenvalue solution of a generalized eigen-equation, conventional
LPP usually suffers from several problems. The first problem is
that the dimensionality of the sample is usually larger than the
number of the samples and the generalized eigen-equation
cannot be directly solved due to the matrix singularity problem.
This problem is also referred to as the small sample size (SSS)
problem. An image-based recognition problem such as face
recognition is usually a SSS problem. On the other hand, image-
based recognition covers a wide range of pattern recognition
problems. Thus, the study of how to properly apply LPP to the SSS
problem is crucial. To the best of our knowledge, no satisfactory
approach to this study has been proposed. Most of previous LPP-
based image recognition applications avoid the SSS problem. For
example, a number of face recognition applications of conven-
tional LPP first reduce the size of the face image and then
implement the conventional LPP algorithm for the resized images.
In order to make the conventional LPP algorithm workable, the
dimensionality of the vector of the resized image should be
smaller than the number of the training samples. Consequently, in
order to avoid the SSS problem, the original image usually should
be resized into a very small size. This will cause a large quantity of
image information loss. Another example of avoiding the SSS
problem is to first reduce the dimensionality of the sample by
performing principal component analysis and then to carry out
the conventional LPP algorithm [23]. But there are no guidelines
for how to use principal component analysis to transform the
sample into a proper dimensionality. If the extent of reduction is
too great, there will be considerable information loss. On the
other hand, if the dimension reduction extent is small, the
corresponding eigen-equation is still singular and cannot be
solved directly.
A further drawback of conventional LPP is that if it is
implemented by solving the minimum eigenvalue problem, the
minimum eigenvalue solution is not always optimal for preser-
ving the local structure. There are two reasons for this. The first is
that if there are zero eigenvalues, conventional LPP will take as
transforming axes the eigenvectors corresponding to the zero-
eigenvalues of the generalized eigen-equation. As a result, after
conventional LPP transforms samples into a new space using
these transforming axes, a sample statistically will have the same
representation as its neighbors, which will be formally demon-
strated in Section 2. This is not how locality preserving projection
works. The goal of LPP is not to make samples have the same
representation but is to preserve the neighbor relationships
between samples. The second reason is that the classifier cannot
correctly classify samples when conventional LPP is implemented
in the unsupervised case, since two neighbor samples from two
different classes might have the same representation in the new
space.

We also note that when implementing a LPP solution scheme,
we should define a specific number of neighbor samples for each
particular sample. In practice, it is not known how different values
of this number influence the classification performance.

In this paper, we propose three new solution schemes for LPP.
These new schemes have three advantages. The first is that they
can be directly implemented no matter whether there exists the
SSS problem or not. The second is that they are consistent with
the goal of LPP and have a clear justification. The third advantage
is that experimental results show that these schemes are more
accurate than conventional LPP. This paper also conducts experi-
ments to show the effect on classification performance of the
number of neighbor samples and the value of the parameter k of
k-nearest-neighbor classifiers (KNNC). The experimental results
show that the improved LPP solution scheme 3 is not only
computationally efficient, but also classifies much more accu-
rately than conventional LPP. It is also a well-behaved LPP
solution scheme whose classification accuracy is little influenced
by the definition of neighbor samples.

The remainder of the paper is organized as follows. In Section 2
we introduce the algorithm of conventional LPP and analyze its
characteristics. In Section 3 we present our LPP solution schemes
and show their characteristics. In Section 4 we describe the
experimental results. Section 5 offers our Conclusion.
2. Description of LPP

LPP was proposed as a way to transform samples into a new
space and to ensure that samples that were in close proximity in
the original space remain so in the new space. The goal of LPP is to
minimize the following function:

1

2

X
ij

ðyi�yjÞ
2wij, ð1Þ

where yi, yj are transform results of vector samples xi, xj, and wij is
the weight coefficient. yi is obtained by using a transforming axis
z. That is, we have yi ¼ xT

i z and yj ¼ xT
j z. The function defined in

Eq. (1) can be rewritten as

1

2

X
ij

ðzT xi�zT xjÞ
2wij ¼

X
ij

zT xiwijx
T
i z�

X
ij

zT xiwijx
T
j z: ð2Þ

By defining a matrix Wand a dialog matrix D as ðWÞij ¼wij,
ðDÞii ¼

P
jwij we can transform (2) into

zT XðD�WÞXT z¼ zT XLXT z, ð3Þ
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whereL¼D�W, n is the number of the training samples
x1,x2,. . .,xn and the matrix X is defined as X¼ ½x1 x2 . . . xn�.
x1,x2,. . .,xn are supposed to be column vectors. Note that both L
and D are positive semi-definitive matrices. W is a symmetric
matrix and the element wij (also referred to as the weight
coefficient) is defined as follows:

wij ¼
expð�:xi�xj:

2
=tÞ if xj ðor xiÞ is one of Wk neighbors of xi ðor xjÞ

0 otherwise

(

where the parameter Wk is set to a positive constant. This
definition shows that if xj ðor xiÞ is one of the Wk neighbors of
xi ðor xjÞ, then the weight coefficient is set to wij ¼ exp
ð�99xi�xj99

2
=tÞ; otherwise the weight coefficient is set to zero. It

is clear that the value of the non-zero weight coefficient is
determined by the distance between samples. The smaller the
distance between two neighbor samples xi and xj, the larger the
weight coefficient wij. As a result, the minimization of the function
in Eq. (1) implies that if the weight coefficient of two samples is
large, their transform results should be in close proximity in the
new space. Therefore, through the LPP transform with the
objection function (1), close samples in the original space will
be still close in the new space.

2.1. Conventional LPP solution scheme 1

When LPP takes the following function as its goal

argmin
zT XDXT z ¼ 1

zT XLXT z, ð4Þ

we refer to the corresponding solution scheme as the conven-
tional LPP solution scheme 1. The goal of the conventional LPP
solution scheme 1 is to obtain the z that satisfies
argmin

z
ðzT XLXT z=zT XDXT zÞ. It can be easily proven that the

optimal solution z of Eq. (4) is identical to the eigenvector
corresponding to the minimum eigenvalue of the following
generalized eigen-equation:

XLXT z¼ lXDXT z: ð5Þ

It is clear that Eq. (5) has the same minimum eigenvalue
solution as the following eigen-equation:

ðXDXT
Þ
�1XLXT z¼ lz: ð6Þ

In other words, the conventional LPP solution scheme 1 takes
as the optimal transforming axis the eigenvector corresponding
to the minimum eigenvalue of (6). In real-world applications,
the conventional LPP solution scheme 1 usually first sorts the
eigenvectors in increasing order of the corresponding eigenvalues
and then takes the eigenvectors corresponding to the
smallest eigenvalues as transforming axes to implement the
LPP transform. The dimension of the transform result of
the sample is identical to the number of the transforming axes
that are used.

The conventional LPP solution scheme 1 may suffer from the
following drawback: in the case of the so-called SSS problem
where since the rank of XDXT is smaller than its order and
XDXT is a singular matrix, the generalized eigen-equation (6)
cannot be directly solved. Indeed, the rank of XDXT must be no
larger than the number of the training samples. On the other
hand, the order of XDXT is equal to the dimension of the sample
vector. Consequently, if the dimension of the sample vector
is larger than the number of the samples, the matrix XDXTmust be
singular and both (5) and (6) cannot be solved directly. This
is demonstrated in detail by the following theorems and
inference.

Theorem 1. Let N and n be the dimension of the sample vector and

the number of the training samples, respectively. If N4n, then XDXT

and XLXT must be singular.

Proof. The maximum possible rank of both X and XT is n. This can
be described by rankðXÞ ¼ rankðXT

Þrn. It is known that the
maximum possible rank of the product of two matrices is smaller
than or equal to the smaller of the ranks of the two matrices. That

is, if rankðAÞ ¼ rA and rankðBÞ ¼ rB, then rankðABÞrminðrA,rBÞ,
where A and B are two matrices. As a result, we know that

rankðXDXT
Þrn and rankðXLXT

Þrn.

Both XDXT and XLXT are N�N matrices. Since N4n, it is certain
that rankðXDXT

ÞoN and rankðXLXT
ÞoN, which means that XDXT

and XLXT are both singular matrices.
We can conclude that in the case of the SSS problem, since

XDXT is singular the eigen-equations (5) and (6) cannot be
directly solved. This is the first drawback of the conventional LPP
solution scheme 1.

If one converts Eqs. (5) and (6), respectively, into (7) and (8),
the conventional LPP solution can be worked out directly:

XLXT z¼ lðXDXT
þmIÞz, ð7Þ

ðXDXT
þmIÞ�1XLXT z¼ lz, ð8Þ

where m is a small positive constant and I is the identity matrix. In
practice, a similar procedure for solving singular eigen-equations
has been widely used in numerical computation [34,35]. How-
ever, even if we do so, we will find that when the eigenvector of
the minimum eigenvalue of (7) or (8) serves as the LPP
transforming axis of the SSS problem, the transform result will
represent data poorly. This is because in the case above the
minimum eigenvalue is zero and the conventional LPP solution
scheme will take as the transforming axis the eigenvector of the
zero-eigenvalue of (7) or (8). Consequently, as shown in the
following theorem, neighbor samples will statistically produce
the same transform result.

Theorem 2. After the conventional LPP solution scheme 1 trans-

forms samples into new representations by using the eigenvectors

corresponding to the minimum eigenvalues as transforming axes and

where the minimum eigenvalue of the eigen-equation is zero, a

sample will statistically have the same representation as its

neighbors.

Proof. If both sides of Eq. (7) are left multiplied by zT, we have

zT XLXT z¼ lzT ðXDXT
þmIÞz: ð9Þ

If Eq. (7) has zero eigenvalues and z0 is the eigenvector
corresponding to a zero eigenvalue, then we obtain

zT
0XLXT z0 ¼ 0: ð10Þ

As mentioned in Section 2.1, there is 1=2
P

ijðyi�yjÞ
2wij ¼

zT XLXT z. Consequently, if the eigenvector corresponding to a zero
eigenvalue is taken as the transforming axis, the transform result
will statistically satisfy the following condition:

1

2

X
ij

ðyi�yjÞ
2wij ¼ 0: ð11Þ

Note that wijZ0 and (yi�yj)
2
Z0 are certain for arbitrary i and

j. Hence, Eq. (11) means that for arbitrary i and j, (yi�yj)
2wij¼0

should be satisfied. In particular, for two neighbor samples wij40
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is satisfied. As a result, (yi�yj)
2wij¼0 implies that in the

transform space the neighbor samples must have the same
representation. This does not preserve the local structure of data
as in LPP, which requires that the transform results of neighbor
samples be in close proximity rather than the same. This is one
drawback of the conventional LPP solution scheme 1. According to
the matrix eigenvalue theory, we know that the number of zero-
eigenvalues of either of (7) or (8) is N�r. N and r are the
dimensionality of the sample vector and the rank of XLXT,
respectively.

A further potential drawback of the conventional LPP solution
scheme 1 is that even if the neighbor samples are from different
classes, in the transform space obtained using the conventional
LPP solution scheme 1 they might also statistically have the same
representation, which is disadvantageous for pattern classifica-
tion problems. In other words, it is possible for the conventional
LPP solution scheme 1 to produce the same representation for
samples from different classes, especially for the samples located
on the border of two classes. All unsupervised LPP methods might
suffer from this same drawback.
2.2. Conventional LPP solution scheme 2

The following describes another conventional LPP solution
scheme. According to the definition of L, we know that

zT XLXT z¼ zT XDXT z�zT XWXT z: ð12Þ

As a result, the objective function as shown in Eq. (4) is
equivalent to the following one:

arg max
zT XDXT z ¼ 1

zT XWXT z: ð13Þ

It is easy to prove that (13) is identical to
argmax

z
ðzT XWXT z=zT XDXT zÞ and the optimal solution of Eq. (13)

is the eigenvector corresponding to the maximum eigenvalue of
either of the following generalized eigen-equations:

XWXT z¼ lXDXT z, ð14Þ

i.e.,

ðXDXT
Þ
�1XWXT z¼ lz: ð15Þ

Clearly, given the objective function (13), we should exploit
the maximum eigenvalue solution of Eqs. (15) or (14) to
implement the LPP transform. In other words, after we work out
the eigenvalues and eigenvectors of Eq. (15), we should select as
the LPP transforming axes the eigenvectors corresponding to
maximum eigenvalues of Eq. (15). We refer to this solution
scheme as the conventional LPP solution scheme 2. When the
conventional LPP solution scheme 2 is applied to the SSS problem,
it also suffers from the matrix singularity problem and the
generalized eigen-equation is also not directly solvable. On the
other hand, if XDXT is replaced by ðXDXT

þmIÞ, the equation
becomes directly solvable and the solution does not suffer from
the same zero-eigenvalue problem as the conventional LPP
solution scheme 1 encounters. In other words, since the conven-
tional LPP solution scheme 2 selects the eigenvectors correspond-
ing to maximum eigenvalues of (15) as the transforming axes, the
conventional LPP solution scheme 2 will not encounter the
drawback that in the transform space neighbor samples statisti-
cally have the same representation.
3. New LPP solution schemes

This section describes three new LPP solution schemes.
3.1. Improved LPP solution scheme 1

3.1.1. Formal description

In this subsection, we describe our improvement to the
conventional LPP solution scheme 1, i.e., the improved solution
scheme 1. This solution scheme does not have the same draw-
backs as the conventional LPP solution scheme 1.

First, we demonstrate that effective solutions of the conven-
tional LPP solution scheme 1 should be from a subspace of XDXT.
For simplicity, we define that D1 ¼XDXT , L1 ¼XLXT and
W1 ¼XWXT . Suppose that a!1, a!2,. . ., a!r are the eigenvectors
corresponding to the positive eigenvalues of D1 and
a!rþ1, a!rþ2,. . ., a!N are the unit eigenvectors corresponding to
the zero eigenvalues. Here, we regard eigenvalues that are less
than 0.2�10�10 as zero eigenvalues. According to the nature of
LPP, the ability of preserving the neighbor relationship can be
measured by zT L1z=zT D1z. That is, the smaller zT L1z=zT D1z, the
better the local structure of samples is preserved. We can rewrite
Eq. (5) as L1z¼ lD1z or

zT L1z¼ lzT D1z: ð16Þ

We denote the range space of D1 by Dp
1 ¼ spanfa!1, a!2,. . ., a!rg

and represent the null space of D1 by Dq
1 ¼ span

fa!rþ1, a!rþ2,. . ., a!Ng. If z is from Dq
1, i.e., zADq

1, we obtain
zT D1z¼ 0. This is because if zADq

1, then z can be expressed as a
linear combination of the basis of Dq

1, a!rþ1, a!rþ2,. . ., a!N . That is,
we have z¼

PN�r
i ¼ 1 gi a

!
iþ r and zT D1z¼

PN�r
i ¼ 1

PN�r
j ¼ 1 gigj a

!
iþ r

T

D1 a!jþ r. Since a!jþ r is the eigenvector corresponding to a zero
eigenvalue of D1, D1 a!jþ r¼ 0 is satisfied for each a!jþ r and
consequently zT D1z¼ 0. Therefore, in this case, it is not guaran-
teed that the zT L1z=zT D1z has the minimum value. On the other
hand, if zADp

1, we can conclude that zT D1z40. This is because
zADp

1 means z¼
Pr

i ¼ 1 Zi a
!

i and

zT D1z¼
Xr

i ¼ 1

Xr

j ¼ 1

ZiZj a
!T

i D1 a!j ¼
Xr

i ¼ 1

Xr

j ¼ 1

ljZiZj a
!T

i a!j ¼
Xr

i ¼ 1

liZ2
i

where li is the eigenvalue corresponding to the eigenvector a!i of
D1, i¼1, y, r. We note that li40 and there is at least one non-
zero Zi; therefore, zT D1z¼

Pr
i ¼ 1 liZ2

i 40. Thus, in the case where
z is from Dp

1, we are able to obtain small zT L1z=zT D1z. As a result,
we can conclude that effective solutions of the conventional LPP
solution scheme 1 should be from the range space of D1 rather
than from its null space.

We design the improved solution scheme 1 as follows. We first
define that R¼ ½a!1 a!2 . . . a!r� and S¼ ½a!rþ1 a!rþ2 . . . a!N�.
Using R, we respectively transform D1, L1 and W1 into the
following matrices: D¼RT D1R, L¼RT L1R and W¼RT W1R. We
then construct the following eigen-equation:

Lz¼ lDz: ð17Þ

We can directly solve this equation since D is of full rank. Let
-b1, b

!
2,. . ., b
!

r denote the eigenvectors corresponding to eigen-
values l1, l2, y, lr in the increasing order of Eq. (17). If the
sample is required to be transformed into an m-dimensional
space, we should select b

!
1, b
!

2,. . ., b
!

m as the m transforming axes
of LPP. We refer to this solution scheme as the improved LPP
solution scheme 1.
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3.1.2. Transform procedure of the improved LPP solution scheme 1

The transform procedure of the improved LPP solution
scheme 1 is as follows. Using the matrix R, we first produce
c¼ xT R from a sample x. Then we transform c into y by
carrying out y¼ cG, where G¼ ½ b

!
1 b
!

2 . . . b
!

m�. For simplicity
of expression, the whole transform procedure can also be
implemented and denoted by using y¼ xT RG.

3.2. Improved LPP solution scheme 2

In this subsection, we describe the improved LPP solution
scheme 2, an improvement to the conventional LPP solution
scheme 2. The improved LPP solution scheme 2 uses two separate
procedures to perform two transforms, respectively. The first
procedure is based on the following eigen-equation:

W z¼ lDz, ð18Þ

where W and D are defined in Section 3.1. We can directly solve
Eq. (18) since D is of full rank. Let -11, 1!2,. . ., 1!r denote the
eigenvectors corresponding to non-increasing eigenvalues l1,
l2, y, lr of Eq. (18). According to the goal of LPP, the eigenvectors
corresponding to maximum eigenvalues of (18) should be used as
transforming axes. As a result, if we select 1!1, 1!2,. . ., 1!d as the d

transforming axes, we can produce d-dimensional features. The
feature extraction procedure is presented as follows: let
U¼ ½ 1!1 1!2 . . . 1!d�. Then the d-dimensional features of a
sample x are obtained by the transform y¼ xT RU.

The second procedure is as follows: Using S, we transform W1

and D1 into ~W ¼ ST W1S and ~D ¼ ST D1S, respectively, where S is
also defined as S¼ ½a!rþ1 a!rþ2 . . . a!N �. In the transform space
obtained using S, ~zT ~D ~z ¼ 0 is satisfied for arbitrary ~z. Therefore,
in this space, the ratio ~zT ~W ~z of ~zT ~D ~z will be the infinity.
According to the nature of the conventional LPP solution scheme 2,
the ~z corresponding to large ~zT ~W ~z is helpful for preserving the
local structure of samples. Therefore, we can take as transforming
axes of LPP the eigenvectors corresponding to maximum
eigenvalues of the following eigen-equation:

~W ~z ¼ l ~z: ð19Þ

Suppose that e eigenvectors n
!

1, n
!

2,. . ., n
!

e of Eq. (19) are used
as transforming axes, and then the feature extraction result is

~y ¼ xT SV, where V¼ ½ n
!

1 n
!

2 . . . n
!

e�. Hence, the final feature
extraction result of a sample x obtained using the improved LPP
solution scheme 2 is the following (d+e)-dimensional row vector:

y¼ y ~y � :
�

ð20Þ

3.3. Improved LPP solution scheme 3

In this subsection, we will describe the improved LPP solution
scheme 3. We can also improve the conventional LPP solution
scheme 2 in the following way: above of all, the objective function
(13) is partially equivalent to the following one:

argmaxðzT XWXT z�uzT XDXT zÞ, ð21Þ

i.e.,

argmaxzT XðW�uDÞXT z, ð22Þ

where u is a positive constant. As a consequence, we can define
the following eigen-equation:

XðW�uDÞXT z¼ lz: ð23Þ
We can implement the LPP transform by taking a number
of eigenvectors corresponding to maximum eigenvalues of
Eq. (23) as transforming axes. We refer to this scheme of solving
the LPP transforming axes as the improved LPP solution scheme 3.
In this scheme, the strategy of improving conventional LPP is to
convert the objective function argmax

z
ðzT XWXT z=zT XDXT zÞ to

(21). In other words, the improved LPP solution scheme 3
improves the conventional LPP solution scheme 2 by replacing
the objective function in the division form with a function in the
subtraction form. It is clear that (23) can be directly solved in all
cases including the SSS case and the improved LPP solution
scheme 3 has a lower computational cost than the improved LPP
solution schemes 1 and 2. It should be pointed out that a similar
strategy has been used to improve the Fisher discriminant
analysis [36].
4. Experimental design and results

We used the ORL, AR, and FERET face image databases to test
the proposed new LPP solution schemes and the conventional LPP
solution schemes 1 and 2. As conventional LPP is an unsupervised
method, all these solution schemes are implemented as unsu-
pervised schemes to ensure a fair comparison. Since the XDXT in
all of the experiments on the conventional LPP solution schemes 1
and 2 is singular, we replaced (XDXT)�1 with the pseudo-inverse
of XDXT. We also slightly modified the conventional LPP solution
scheme 1 as follows: when the eigen-equation has zero
eigenvalues, we discarded zero eigenvalues and the correspond-
ing eigenvectors and took only the eigenvectors corresponding to
the non-zero smallest eigenvalues as transforming axes. We refer
to this modified scheme as modified conventional solution
scheme 1. When implementing conventional solution scheme 1
and modified conventional scheme 1, we regard eigenvalues that
are less than 0.2�10�11 as zero eigenvalues. We used the k-
nearest-neighbor classifier (KNNC) to classify the transform
results of the samples. In the experiment on the improved
solution scheme 3 on the ORL face database, the parameter u was
set to 0.8. In the experiment on the improved solution scheme 3
on the AR and FERET face databases, the parameter u was set to
0.02. In all experiments, the parameter t in the definition of wij is
defined as the maximum value of the distances between arbitrary
two training samples.

4.1. Experiment on the ORL face database

In the experiment on the ORL database (http://www.cam-orl.
co.uk), all the face images in the ORL face database were captured
against a dark homogeneous background. These images contain
various facial expressions (smiling/not smiling, open/closed
eyes) and facial details. The subjects were in an upright, frontal
position but there was a tolerance for some tilting and rotation of
up to about 201 [37]. Ten different images were obtained for each
of the 40 subjects. The first five face images of each subject
were used as training samples, and the remaining images were
used as testing samples. In order to implement a LPP algorithm at
a lower computational cost, we resized each original 112�92
image to 56�46 using the down-sampling method proposed
in [38].

Fig. 1 shows the classification accuracies of six LPP solution
schemes on the ORL face database. It describes the variation of the
classification accuracy of each solution scheme with the number
of the used transforming axes. Fig. 1(a), (b), (c), (d), (e) and (f),
respectively, show the classification right rates of conventional
solution scheme 1 (i.e., conventional 1), conventional solution
scheme 2 (i.e., conventional 2), modified conventional solution

http://www.cam-orl.co.uk
http://www.cam-orl.co.uk
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Fig. 1. The classification right rates (classification accuracies) of six LPP solution schemes on the ORL face database.

Y. Xu et al. / Pattern Recognition 43 (2010) 4165–41764170



Y. Xu et al. / Pattern Recognition 43 (2010) 4165–4176 4171
scheme 1 (i.e., modified conventional 1), the improved solution
scheme 1 (i.e., improved 1), the improved solution scheme 2
(i.e., improved 2) and the improved solution scheme 3
Table 1
The classification accuracies of different solution schemes with optimal settings of

Wk and knnc on the ORL database.

5 20 40 60 80 100 Wk knnc

Conventional 1 0.31 0.59 0.70 0.71 0.74 0.74 1 3

Conventional 2 0.11 0.42 0.63 0.71 0.76 0.76 3 1

Modified conventional 1 0.21 0.43 0.63 0.70 0.75 0.74 5 1

Improved 1 0.14 0.43 0.63 0.70 0.75 0.74 5 1

Improved 2 0.14 0.44 0.63 0.64 0.71 0.75 5 1

Improved 3 0.69 0.90 0.90 0.90 0.90 0.90 2 1

In the first row, 5, 20, 40, 60, 80 and 100 denote how many transforming axes were

used. The shown values of Wk and knnc are the ones that enable a solution scheme

to produce the best performance.
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Fig. 2. Comparison of the performance of different solution schemes with optimal

settings of Wk and knnc on the ORL database. The label of the solution scheme

shows both the optimal values of Wk and knnc and the names of the solution

schemes.

Fig. 3. Normalized non-occluded face images with 50�40 pixels of one subject. (a) ne

(g) all sides light on. (h), (i), (j), (k), (l), (m) and (n) were taken in the second session u
(i.e., improved 3). knnc¼1 means that the classifier is the
1-nearest-neighbor classifier. We used Wk to indicate how
many neighbors were taken into account when we calculated
the weight matrix. Wk¼1, 2, 3, 4 and 5 mean that we define one,
two, three, four and five neighbor samples for a sample when
calculating the weight matrix, respectively. For example, 1 means
that when calculating wij, we set the value of the parameter Wk

in wij to 1.
We can see that improved 3 is the most accurate of the

solution schemes and that when more than 80 transforming axes
are used, it almost always achieves close to or even the highest
accuracy. However, the accuracies of the other schemes vary with
the number of transforming axes. The value of Wk affects the
classification accuracies of the different LPP solution schemes in
various ways. For example, the classification accuracy of conven-
tional 1 rapidly decreases as the value of Wk increases. However,
the classification accuracy of modified conventional 1 increases as
the value of Wk increases.

Table 1 shows the classification accuracies of different solution
schemes with optimal settings of Wk and knnc on the ORL
database. Fig. 2 shows the performance comparison of different
solution schemes with optimal settings of Wk and knnc on the
ORL database. The optimal settings of Wk and knnc mean that
under these settings of Wk and knnc, the solution scheme achieves
the best classification performance. We also see that improved 3
performs best.
4.2. Experiment on the AR face database

The AR face database [39,40] contains over 4000 gray face
images of 126 people. The images of each subject have different
facial expressions, and were acquired under lighting conditions
and with and without occlusions. Each subject provided 26 face
images. We note that 12 face images of each subject are occluded
with sunglasses or a scarf. The face images of 120 subjects were
taken in two sessions. We used only the images of these 120
subjects in our experiment. We manually cropped the face portion
of every image and then normalized them to 50�40 pixels [41].
Fig. 3 shows the normalized images of one subject. We used only
the 14 non-occluded face images of each subject to test different
solution schemes. The first and eighth images were used as
training samples and the remaining images were used as testing
samples.
utral expression, (b) smile, (c) anger, (d) scream, (e) left light on, (f) right light on,

nder the same conditions as (a), (b), (c), (d), (e), (f) and (g), respectively.
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Fig. 4. The classification accuracies of six LPP solution schemes on the AR face database.
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Table 2
The classification accuracies of different solution schemes with optimal settings of Wk and knnc on the AR database.

5 20 40 60 80 100 Wk knnc

Conventional 1 0.16 0.31 0.34 0.37 0.38 0.39 1 2

Conventional 2 0.10 0.37 0.54 0.62 0.68 0.73 5 1

Modified conventional 1 0.14 0.38 0.54 0.61 0.69 0.73 5 1

Improved 1 0.10 0.37 0.54 0.62 0.68 0.73 5 1

Improved 2 0.10 0.37 0.52 0.61 0.67 0.73 5 1

Improved 3 0.43 0.65 0.71 0.73 0.75 0.76 1 1

In the first row, 5, 20, 40, 60, 80 and 100 denote the number of the used transforming axes. The shown values of Wk and knnc are the ones that enable a solution scheme to

produce the best performance.
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Fig. 5. The classification performance comparison of different solution schemes

with respective optimal settings of Wk and knnc on the AR database. The optimal

values of Wk and knnc are shown together with the solution scheme names in the

label of the solution scheme.
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Fig. 4 shows the classification accuracies of six LPP solution
schemes on the AR face database. We can see that different values
of Wk have obvious effects on the classification accuracies of all
the LPP solution schemes except for improved 3. When Wk¼1
conventional 1 obtains its highest classification accuracy.
However, when Wk¼1, conventional 2, modified conventional 1,
improved 1 and improved 2 all obtain their lowest classification
accuracies. In contrast, improved 3 with different values of Wk

produces almost the same accuracies.
Table 2 shows the classification accuracies of different

solution schemes with the respective optimal settings of Wk

and knnc on the AR database. Fig. 5 compares the classification
performance of different solution schemes with optimal settings
of Wk and knnc on the AR database. Conventional 1 obtains
the worst classification performance. If the solution schemes all
use less than 100 transforming axes, improved 3 will produce
much higher classification accuracy than the other solution
schemes. When the number of the transforming axes used is
larger than 100, the accuracy of improved 3 is similar to the
highest accuracy of the other solution schemes, except
conventional 1. Improved 1, improved 2, modified conventional
1 and conventional 2 also produce a similar optimal classification
performance.
4.3. Experiment on the FERET face database

The FERET face image database was sponsored by the US
Department of Defense through the DARPA Program [42,43].
This database has been widely used for testing and evaluating
state-of-the-art face recognition algorithms. We conducted
experiment on a subset of the FERET database. This subset
includes 1,400 images of 200 individuals each having seven face
images. It is composed of images named with two character
strings: ‘‘ba,’’ ‘‘bj,’’ ‘‘bk,’’ ‘‘be’’, ‘‘bf,’’ ‘‘bd,’’ and ‘‘bg’’ [44]. The images
in this subset involve variations in facial expression, illumination,
and pose. The facial portion of each original image was
automatically cropped based on the location of eyes and the
cropped image was resized to 80�80 pixels [41]. We used the
down-sampling method in [37] to produce 40�40 face images.
We took ‘‘ba’’ and ‘‘be’’ as training samples and used the
remainder as testing samples.

Fig. 6 shows the classification accuracies of six LPP solution
schemes with different values of Wk on the FERET face database.
We see again that different values of Wk have little effect on the
classification accuracy of improved 3. In addition, conventional 1
and improved 2 both obtain their highest classification accuracies
when Wk¼1. In contrast, the other solution schemes except for
improved 3 obtain their lowest classification accuracies when
Wk¼1.

We use Fig. 7 and Table 3 to show the classification
performance comparison of different solution schemes with
optimal settings of Wk and knnc on the FERET database.
Improved 3 is definitely more accurate than the other solution
schemes. In contrast, conventional 1 obtains the lowest accuracy
among all the solution schemes. The classification accuracy of
improved 2 is slightly lower than improved 3 but higher than the
other solution schemes.
5. Conclusion

When conventional LPP is applied to image data, it will suffer
from several problems including the SSS problem and the
problem that it does not preserve the locality structure. The three
solution schemes proposed in this paper have clear advantages.
First, as the proposed solution schemes do not suffer from the
matrix singularity problem, they are all directly applicable to the
SSS problem. Second, experimental results show that at least one
of the proposed solution schemes can outperform conventional
LPP in classification accuracy. It is especially noticeable that
improved 3 is not only computationally efficient, but also
classifies quite accurately. Moreover, it usually produces a stable
high classification accuracy, little influenced by different values of
the parameter Wk. In addition, the proposed LPP solution schemes
have solid theoretical foundations.
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Fig. 6. The classification accuracies of six LPP solution schemes on the FERET face database.
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the solution scheme.

Table 3
The classification accuracies of different solution schemes with optimal settings of

Wk and knnc on the FERET database.

5 20 40 60 80 100 Wk knnc

Conventional 1 0.032 0.05 0.06 0.07 0.06 0.07 1 1

Conventional 2 0.02 0.05 0.09 0.14 0.14 0.16 4 1

Modified conventional 1 0.02 0.04 0.09 0.13 0.14 0.16 4 1

Improved 1 0.02 0.05 0.09 0.12 0.14 0.16 4 1

Improved 2 0.15 0.26 0.34 0.37 0.39 0.41 1 1

Improved 3 0.25 0.46 0.50 0.51 0.51 0.50 2 1

In the first row, 5, 20, 40, 60, 80 and 100 denote the number of the transforming

axes used. The values of Wk and knnc are those that enable a solution scheme to

produce the best performance.
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